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Abstract-Turbulent heat fluxes are usually modeled by algebraic relations containing the turbulent Prandtl 
number. The underlying hypothesis of an analogy between turbulent momentum and heat transport is, 
however, not valid in complex flow situations. Transport equations are then needed to predict the heat 
fluxes. Two such equations are implemented in a code for statistically two-dimensional flows with a 
Reynolds stress model. The behaviour of this SOC model is tested in cases of compressible boundary layers 
along adiabatic walls at different Mach numbers and for hypersonic boundary layers along cooled walls. 
Finally, shock/turbulent boundary layer interactions are computed and discussed. 0 1997 Elsevier Science 

Ltd. All rights reserved. 

INTRODUCTION 

The accurate prediction of compressible turbulent 
flows is still a challenging task for the aerodynamicist 
and achieves increasing importance with plans by 
aerospace companies to develop a new generation of 
passenger aircraft, the High Speed Civil Transport 
(HSCT). The key to successfully developing such an 
aircraft is new materials for both engines and 
airframe, but also the knowledge about heat loads 
which are highest when the flow is turbulent. 

Turbulent heat fluxes generated in high speed flows 
are mostly modeled using the Boussinesq hypothesis, 
i.e. postulating constant turbulent Prandtl numbers 
or specific profiles. In complex flow situations with 
varying pressure gradients or in shock/turbulent 
boundary layer interactions the turbulent Prandtl 
number cannot be prescribed a priori because it 
changes in space in a complicated way. In order to 
improve the prediction of heat transfer, transport 
equations for the turbulent heat fluxes are needed. 

In the past efforts have been made to improve the 
closure of transport equations for the Reynolds 
stresses in the casl: of compressible flows, but no such 
efforts are known of with respect to turbulent heat 
fluxes. A reason may be the lack of experimental data 
and the enormou:s difficulties in accurately measuring 
these quantities when the flow is compressible. Exist- 
ing studies of turbulent flows involving heat transport 
are related to incompressible flows. Two types of more 
sophisticated models have been developed : models 
using transport equations for the turbulent heat fluxes 
(Lai and So [I], Mompean [2]) and models involving 
transport equati’ons for the variance of the tem- 
perature fluctuation and its dissipation rate (Sommer 
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[3], Lai and So [l], Mompean [2]). In the second case, 
the turbulent heat fluxes are again computed via a 
Boussinesq hypothesis, but the thermal eddy diffu- 
sivity is related to these two quantities. The low 
Reynolds number model developed by Lai and So is 
of the first type and takes the near wall asymptotic 
behaviour of each term in the heat flux transport equa- 
tions into account. It has been adopted in the present 
investigation, assuming that intrinsic effects of com- 
pressibility are of minor importance in the flows 
studied. 

A low Reynolds number SOC model based on 
transport equations for the Reynolds stresses and the 
turbulent energy dissipation rate had already been 
applied to complex compressible flows by Haidinger 
[4], Haidinger and Friedrich [5, 61. In the present 
work, two transport equations for the turbulent heat 
fluxes in statistically two-dimensional situations are 
added and modeled. The performance of these equa- 
tions is studied in the case of compressible flows 
through comparisons with algebraic models and 
experimental results. 

In the paper, the exact equations for the turbulent 
heat fluxes and their modeled versions are first 
presented. Then, the method of numerical integration 
is briefly described. Computations of turbulent 
boundary layers along adiabatic walls at different 
Mach numbers and along cooled walls have been 
performed and discussed. More complex flow cases 
such a& shock/boundary layer interactions are finally 
analyzed. 

2. REYNOLDS STRESS MODEL 

In refs. [4, 51 a Reynolds stress model has been 
applied to compressible flows. A gradient transport 
hypothesis served to model the turbulent heat fluxes. 
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NOMENCLATURE 

;. 
speed of sound 
Reynolds stress anisotropy tensor 

6 C,, C3, C4, C5, CY, C:, Cs, C,, model 
constants [equations (8) and (27)] 

Co, C,S, &A C,B,~, C!, CEI, C,, model 
constants [equations (8) and (27)] 

D$ 0; molecular and turbulent diffusion 
terms 

F(Ma,) empirical model function 
fw wall damping function 
4 h’ Favre averaged and fluctuating 

enthalpy 

@@/axi pressure-scrambling term 
k turbulent kinetic energy 
Ma, turbulent Mach number 
ni unit normal to (and with the origin at) 

the wall 
Ret turbulent Reynolds number k2jve 

P pressure 
pij production tensor 

p” &;/13x, pressure-dilatation correlation 
Pr Prandtl number 
e heat flux vector 
t time 
u’ fluctuating streamwise velocity 
_ I 
ui, u, ith component of the Favre averaged 

and fluctuating velocity 
N 
z&i Reynolds stress tensor 

UF turbulent heat flux vector 
xi Cartesian coordinate (x, streamwise, 

x2, y normal to the wall) 
W’ fluctuating velocity normal to the wall. 

Greek symbols 
a> ai, a2 model constants [equations (8) 

(15)l 
4, Kronecker delta 
s, dilatational or compressible 

dissipation rate 
s, solenoidal dissipation rate 
6, turbulent dissipation rate tensor 
fl molecular shear viscosity 
PLT. eddy viscosity 
i% P mean and instantaneous mass density 
6,, gp model constants [equations (8) (15)] 
zi, shear stress tensor 
@‘i, @‘i.,, R.2, (R.3, qw parts of the model for 

the pressure scrambling term 
@ij pressure strain correlation tensor 
w specific dissipation rate. 

Superscripts 

( . ) Reynolds average 
( .T ) Favre average 
,, Reynolds fluctuation 
I Favre fluctuation, 

Besides this a two equations (k-w) model has been 

with the production term : 

tested in complex compressible flow cases like shock/ 
boundary layer interactions. It is based on Wilcox’s 
formulation [7] which accounts for the pressure-dila- 
tation correlation and the compressible dissipation 
rate in the k-equation, but it uses Zeman’s formula [S, 
91 for the latter instead of Wilcox’s own proposal. 
The main advantage of choosing the w-equation to 
compute the incompressible part of the turbulent dis- 
sipation rate is the possibility to compute the flow 
field down to the wall and have an asymptotically 
correct near-wall boundary condition for w. In the 
case of the Reynolds stress transport equations the 
pressure-strain correlation is modeled according to 
Speziale et al. [lo] while an isotropized version of the 
Hanjalic and Launder [l 1] model for the turbulent 
diffusion and the assumption of a locally isotropic 
turbulent dissipation rate have been adopted. The 
complete set of modeled Reynolds stress and turbulent 
dissipation equations reads : 

-D”,-$,- ;p”$Sij+~q, = 0 (1) 
k 

The molecular and turbulent diffusion terms are 
written as : 

( au22 X 
auik au?:, 

---f_L+- 
ax, ax, - . + axi )I (3) 

The pressure strain correlation according to ref. [lo] 
is : 
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(4) 

and the pressure-dilatation following ref. [12] reads : 

The turbulent dissipation rate is split into its com- 
pressible and incompressible parts. The compressible 
dissipation model proposed by Zeman [8] is : 

P&ii = ip(E. +E,)hij = $1 + ctF(MaT)]CppwkSij. (6) 

For the incompres:sible part a transport equation for 
w is solved : 

+ [C,, - 1 -crF(Ma,) +a2Ma~]Cppw2 

(7) 

Constants used in the model are : 

C, = 0.09 C, = 3.4 CT = 1.8 C2 = 4.2 

c3 = 1.25 Cd = 0.4 cs = 0.8 c: = 1.3 

cs = 0.07 CI, = 0.4 CQ = 0.2 tl = 0.75 

C,, = 1.56 C,, = 1.83 cr, = 2 (8) 

F(Ma,) = 1 -exp [-(Ma,-0.25)2/0.662] 

for MaT > 0.25 (9) 

(10) 

The turbulent Mach number, MaT, is one (but not the 
only) measure of intrinsic effects of compressibility. 
The compressible part of turbulent kinetic energy dis- 
sipation rate is negligible for Ma= < 0.25. In the above 

equations Favre’s averaging has been used. Con- 
tributions from the mean velocity fluctuation, $, 
have, however, been ignored. 

3. MODELING OF HEAT FLUX EQUATION 

The exact transport equation for the turbulent heat 
flux in the case of compressible flow is : 

ap kj a4, - Kax- + h’jy - u:z 
\-AI 

7 8 9 

(11) 

where rij = P (auilaxj + aujlax,) +(aUk/a&)dij and 
qj = -XJT/ax,) represent the stress tensor for New- 
tonian fluids and Fourier’s heat flux vector. An order 
of magnitude analysis of its incompressible counter- 
part has been done by Mompean [2] in order to select 
those terms which are the most important ones in high 
Reynolds number flow. An asymptotic analysis has 
also been performed by Lai and So [l] to study the 
asymptotic behaviour of the different terms close to 
the wall. The various terms in equation (11) are now 
discussed and modeled. 

The first term represents the rate of change of the 
turbulent heat flux due to divergence during the mean 
convective transport. Terms 2 and 3 describe the pro- 
duction of turbulent heat flux due to mean shear and 
mean enthalpy gradients. All these terms can be com- 
puted directly and need no modeling. 

Term 4 is a turbulent diffusion term. The analysis 
of Lai and So [l] shows that this term is weak near the 
wall and becomes more important when the Reynolds 
number increases. Different models have been sug- 
gested for this term. Lai and So used the model pro- 
posed by Launder [13]. 

The constant Cf is equal to 0.11. Assuming an analogy 
to the turbulent diffusion term in the Reynolds stress 
equation this term can also be modeled as : 
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0 
&$$f= _.& 5&, 

[ i 

au71 aUTf Term 7 represents the pressure-scrambling term. A 

a 
-&-+-‘- modelisation of this term has been described by Lai 

/ )I axi . and So [l] for incompressible turbulence. The authors 

(13) 
first split the correlation into a high Reynolds number 
part and a near wall part, according to : 

Term 5 contains compressible terms, i.e. con- 
tributions which account for compressibility of the /1’$ = @i+fw@i.w (20) 
mean and fluctuating fields. In order to model these 
terms correctly, data from direct numerical simu- 
lations would be very useful. Recently, Sarkar et al. 

ai is then decomposed into 

[12] have used such data to derive models for the @‘i = Q&1 +%,z +@iJ (21) 
pressure-dilatation correlation and compressible dis- 
sipation rate. We try to express the unknown cor- 

where ~ 
represents the contribution due to tur- 

relations in terms of models used for the Revnolds bulence &ctuations 

stress equation. The term uj(ap/dt) can be decomposed 
into G(@/at) and u:(ap”/at). While the first term van- Q1,, = -cIocfiwpU~ (22) 
ishes in statistically steady flows, the second can only 
be important, when the fluctuating flow exhibits con- 

Q counteracts the production term 

siderable effects of compressibility. Both terms are 
neglected in the present study. Decomposing the pres- 

QQ = -c*,pu~$ (23) 
k 

sure and the velocity vector into mean and fluctuating 
parts, the remaining term of (5) can be rewritten as : and QD,, is a wall reflection term 

ap ap aptI up; - = fi,z - + li,u; - (24) 
axi axj ax, 

A gradient transport hypothesis can be used (see ref 
[ 141) to model G as : 

(15) 

with cP = 5. 
u;u;(ap”/ax,) should be small compared to 
Cjuj(ap”/axj) ; it is therefore neglected. The correlation 
u:(ap”/ax,) is approximated by : 

ni represents the unity vector normal to the wall. 
Lai and So have made computations with and without 
this term and finally suggest to neglect this term. The 
influence of @‘i,3 will also be tested here. For the second 
term on the r.h.s. of (20), Lai and So’s model is 
adopted here : 

a$+, = c,&ppu~ - c,opu~n,ni 

The damping factoryi is : 

(25) 

. (26) 

aptI 
u:z = - c,gp’t 

I 
(16) The complete model takes care of the asymptotic 

flow behaviour near the wall. The different model 

where C, is assumed to be of order 1. For the r.h.s. of 
(16) a modelisation is available from the Reynolds 
stress model. Term 6 is decomposed as : 

a4 - aizk au; 
z&4;- = zjgl- +t,,u;-- ax, axj ax, (17) 

and the second term on the r.h.s. is neglected being an 
order of magnitude smaller than the first one. A fur- 
ther decomposition of the stress tensor leads to : 

-atzk aiik -ali, z,&- = Tjkfjku:_ +z;,u;-. axj axj 8% 
(18) 

The molecular diffusion term &u: also appears in the 
Reynolds stress transport equations. We adopt the 
corresponding model, writing : 

I 1 au% 
zjk"I =zF dx,+ 

( 

auik auik -- 
ax, + axi 

> 
. (19) 

constants are : 

C,Q = 3.0 C2Q = 0.4 c,Q& = 0.75 (27) 

The last two terms of equation (11) are grouped 
together and then decomposed in the following way : 

8% ar- -uj_+/!fl 
ax, axj 

The terms z and F reflect compressibility effects in 
the fluctuating fiel&. While 2 is modelled according 
to equation (15), h’ is neglected. The second and fifth 
terms on the r.h.s. of (28) are diffusion terms, whereas 
the third and sixth terms are dissipation terms. They 
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are modelled in a way similar to the ones proposed by 
Lai and So [l] : 

Away from the wall the dissipation term is weak, a 
result which is also confirmed by the order of mag- 
nitude analysis of Mompean [2]. But, near the wall 
this term plays an important role in balancing the 
molecular diffusion term. It is modelled as follows : 

The boundary conditions for the turbulent heat fluxes 
are now described. 

4. BOlJNDARY CONDITIONS 

At the wall, the velocity fluctuations vanish so that 
we have the conditions : 

:F=(-J w?i;%O (31) 

At the outflow and the far-field border of the com- 
putational domain, Neumann conditions are used : 

ai32 ---0 
ax 

The inflow border needs profiles of the mean primitive 
variables and the correlations. The boundary layer 
program (EDDYEIL) of Wilcox [7] is used to compute 
most of the quantities. It does not, however, provide 
the turbulent heat duxes. The simplest way to compute 
them at the inflow border is to use a gradient transport 
hypothesis of the form : 

This assumption can, however, cause problems, 
because the mean temperature gradient is almost zero 
in the mean flow direction. On the other hand, Lai 
and So’s computations [l] predict heat fluxes in this 
direction, the magnitude of which is twice as large as 
that of the wall normal fluxes. The same trend is also 
found in boundary layer experiments of Fulachier 

[ 151. In order to evaluate the influence of the boundary 
condition (33) on the longitudinal heat flux, a 
comparison is made between results based on (33) 

and those for which PUT’ has been taken equal to 

- 2~~7’ at the inflow border. 

5. NUMERICAL METHOD 

The Favre-averaged Navier-Stokes equations f&r 
statistically two-dimensional flow and the transport 
equations for four Reynolds stress components, two 
turbulent heat fluxes and the w-equation are solved 
with a finite volume method [16]. The convective 
fluxes in these equations are computed using an 
approximate one-dimensional Riemann solver. Van 
Albada type sensors serve to detect shock disconti- 
nuities. The diffusive terms are discretized by central 
differencing at each cell face. Source terms in the tur- 
bulence transport equations are calculated via central 
differences from the Riemann solution at the cell faces 
(Haidinger [4]). A first order implicit scheme is used 
for time-integration. Local time-stepping and weak 
coupling between the averaged Navier-Stokes and the 
turbulence transport equations help to save computer 
time and avoid stiffness problems [4, 51. 

6. NUMERICAL RESULTS 

The model is first applied to supersonic boundary 
layers along adiabatic walls at different Mach num- 
bers ( from 0.3 to 8). Then boundary layers on a cooled 
wall at a Mach number equal to 5 are considered. The 
ratio between the adiabatic temperature and the wall 
temperature varies from 0.3 to 1. Those test cases 
were proposed by Bradshaw et al. [ 171 in 1991 at 
the occasion of the project ‘Collaborative testing of 
turbulence models’. Different groups of researchers 
have collaborated in this project and the goal was to 
evaluate different turbulence models by comparing the 
evolution of the skin friction as function of the Mach 
number in the first case and as function of the tem- 
perature ratio in the second case. Those test cases have 
been chosen in order to study and to compare the 
behaviour of the different parts of the new equations. 
Comparisons with results obtained with the Bous- 
sinesq hypothesis for the heat fluxes and with theor- 
etical results are presented. Then, interactions of 
shocks with boundary layers are computed to test the 
modelled equations in more complex cases. 

6.1. Computation of boundary layers at different Mach 
numbers 

All the computations are made on meshes of 70 x 40 
nodes in main and wall normal flow directions which 
were refined near the wall. 

6.1.1. Boundary layer at low Mach number. A 
boundary layer at a subsonic Mach number is first 
computed. Since the transport equations for the tur- 
bulent heat fluxes have been modelled as for incom- 



2726 C. LE RIBAULT and R. FRIEDRICH 

0.01 I I I I I 

Gain 

0.005 - 

_.-- ___---- 
: coIlvectioIl - 

_0.005 - ::, ,,/==-* 
,_*- production ---._. 

Turbulent diffusion .-...-. 
.__/ D&ipadon .._._____ 

LOSS 
Pressure scrambling -.-.-.- 
Molecular diffusion -.-.-. 

-0.01 I 1 I 
0 20 40 60 80 100 120 

z+ 
Fig. 1. Balance of streamwise turbulent heat flux in the wall layer of a Mu = 0.3 boundary layer (adiabatic 
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Fig. 2. Balance of wall-normal turbulent heat flux in the wall layer of a Ma = 0.3 boundary layer (adiabatic 
wall). 

wall). 

pressible flows, it is important to test the behaviour of 
the different terms in this test case first. As the numeri- 
cal method is adapted to compressible flows, it 
is difficult to do a computation at a Mach number 
strictly equal to zero. A computation at a Mach num- 
ber of 0.3 is thus performed. 

The behaviour of the terms contributing to the bal- 

ance of the turbulent heat fluxes u%’ and P?% near 
the wall is presented in Figs. 1 and 2. For this first 
computation, the compressible terms 5 and 6 are not 
taken into account. The dissipation and the molecular 
diffusion play an important role near the wall and are 

very small away from the wall. The contribution of the 
turbulent diffusion is relatively weak and convection 
is insignificant. From z+ greater than 40 onwards, 
equilibrium prevails between the production and pres- 
sure scrambling terms and the other terms are negli- 
gible. The profiles of the different terms are in good 
agreement with those of Lai and So [l] who have 
performed computations in the case of incompressible 
pipe flow. 

To check if the models for the compressible terms 
make a contribution when the Mach nmber is weak, 
a computation with those terms is also performed. As 
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Fig. 3. Influence of terms 5 and 6, of equation (1 l), on the streamwise heat flux balance in the wall layer 

of a Ma = 0.3 boundary layer (adiabatic wall). 
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Fig. 4. Influence of terms 5 and 6, of equation (1 l), on the wall-normal heat flux balance in the wall layer 
of a Mu = 0.3 boundary layer (adiabatic wall). 

one can see in Figs. 3 and 4, the term 5 contributes to 
equilibrium in a la.rge part of the boundary layer, even 
at a weak Mach number. This modelisation is then 
dropped for the moment. The term 6 has practically 
no importance in the whole boundary layer. 

6.1.2. Boundur,y layer at Much 3. Different com- 
putations have th.en been performed, first to test the 
influence of the inlet boundary conditions for the heat 
fluxes and secondly to test the different options of the 
model. A Mach number of three has been chosen 
because it is of the order of magnitude of the Mach 
number of the boundary layer/shock wave inter- 
actions which are presented in the next section. 

The inlet boundary conditions for equation (11) 

have first been computed with the gradient transport 
hypothesis, equation (33). However, for the UT’ corre- 
lation, this hypothesis is in contradiction with thzompu- 
tations. The computation predicts values of u’h’ of the 
same order of magnitude as ~2’ and the hypothesis 
of equation (33) predicts very low values because the 
temperature gradient in the longitudinal direction is 
weak. To test the influence of those boundary con- 
ditions on the results, two computations are perfor- 
med. In the first case, hypothesis (33) is used to com- 
pute the inlet conditiozand in the second caszthis 
condition is kept for w’h’, but the condition u’h’ = 
- w?’ is imposed for U% . The skin friction coeffic- 
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Fig. 5. Effect of inflow boundary conditions for the turbulent heat fluxes on the skin-friction development 

(Mu = 3 boundary layer, adiabatic wall). 
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with turbuIent diffusion according to (13) .....-. 
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Xlml 
Fig. 6. Influence of different models in the computation of turbulent heat fluxes on the skin-friction 

development (Mu = 3 boundary layer, adiabatic wall). 

ients predicted by the two cases are plotted in Fig. 5. 
We observe that the inlet condition has a very weak 
influence on the skin friction computation. In the 

future, the relation r%’ = - w?’ is therefore retained 
atx = 0. 

Then, the different options in the turbulent heat flux 
equations (turbulent diffusivity, compressibility term 
6, wall reflection term) are tested and compared with 
the algebraic model in order to select the best one 
(Fig. 6). The formulation for the turbulent diffusion 
has a very small influence on the skin friction. The 
second formulation will be used in future, because it 
is more compatible with the one used in the Reynolds 

stress model. The compressibility term 6 also has a 
very weak influence. The wall reflection term, which is 
a part of the pressure-scrambling term, has a stronger 
effect and predicts a too weak skin friction : therefore 
it is not used in the future. 

The balance of the heat flux transport near the wall 
is now presented in Figs. 7 and 8, in order to see the 
differences to the subsonic behaviour. We notice that 
the order of magnitude of the heat fluxes is greater 
than in the subsonic case because there is a tem- 
perature gradient near the wall which induces an 
increase in the production term. The gradient trans- 
port hypothesis predicts the same effect because its 
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_.. 

._. 

correlations are proportional to the temperature 
gradient. If we compare the proties of the different 
terms in the heat flux equations, we notice that the 
pressure scrambling term has a weaker effect near the 
wall than in the subsonic case. This term is pro- 
portional to the density which decreases near the wall 
in the case of a compressible flow. 

In order to study the influence of the turbulent heat 
flux models (algebraic model, transport equations) on 
the mean field variables, the profiles of the different 
quantities (velocity, turbulent kinetic energy, tur- 
bulent heat fluxes etc.) are presented. All the profiles 
are plotted in the middle of the computational 
domain. The profiles of velocity and of kinetic energy 

(Figs. 9 and 10) are not modified much by the new 
model. The variations are more important for the 
temperature profile (Fig. 11). Finally, the turbulent 
heat fluxes computed from the transport equations 
are compared with the gradient transport hypothesis 

for %‘. Figure 12 contains profiles of uTf, I%’ nor- 
malized with the edge velocity and temperature. The 
level predicted by the algebraic model is higher than 
that predicted by the transport equations, at least of 

w?i;‘. Experimental results to determine the reliability 

of these predictions are missing. Concerning U% , the 
result for the algebraic model is not plotted because it 
is almost equal to zero. We also notice that the level 
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Fig. 10. Influence of heat flux models on turbulent kinetic energy (Ma = 3 boundary layer, adiabatic wall). 

of - u%’ is higher than that of w%, this is also true 
in the case of the incompressible pipe flow by Lai and 
So [I] and the boundary layer flow of Fulachier [ 151. 

Figure 13 presents temperature profiles for two 
different positions (R, = 7040 and RB = 9233). We 
notice a temperature rise with the thickening of the 
boundary layer. It is most probably due to dissipation 
effects which heat the boundary layer and it explains 
why the turbulent heat fluxes are negative in the longi- 
tudinal direction. In the Reynolds stress model the 
production terms are only functions of the velocity 
gradients, but in the heat flux equations they are also 
functions of the temperature gradient. The tem- 
perature gradient has a behavior which differs from 

that of the velocity gradient. The velocity gradient has 
very high values near the wall and then decreases 
rapidly. On the contrary, the temperature gradient 
keeps values relatively high away from the wall. For 
low Reynolds number models, all the meshes are usu- 
ally such that grid points are concentrated near the 
wall. When the temperature gradient has high values 
in the coarse grid region, oscillations in the profiles 
may appear. This means that relatively high resolution 
of the whole flow field is needed (especially also near 
the boundary layer edge) in order to avoid spatial 
oscillations in the temperature profile. 

6.1.3. Variation of skin friction with Mach number. 
In order to study the dependency of the skin friction 



Turbulent heat fluxes in compressible flows 2731 

0.0045 

0.004 

0.0035 

0.003 

3 
0.0025 

0.002 

0.0015 

0.001 

o.c!@05 

0 

I- 
Reynolds stress + transport eq. for the heat fluxes - 

Reynolds stress + alg. heat flnxes model ------ 

, h______;_______ , ( 

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 
TfIw 

Fig. 11. Influence of heat flux models on mean temperature (Mu = 3 boundary layer, adiabatic wall). 

0.0045 I 1 I 1 

0.004 - 
<w’h’> with alg. model 0 

t 
<w’h’> with transport eq. -----. - 
-<u’h’> with transport . eq. 0.0035 - 

t 
0.003 - t 

0.0025 - $::__._ 
Q “K>_> 

Q 0 
0.002 - ON&... *-?~Q.*_.& -... 

%. .--.?_..o Q 
0 

0.0015 - 
Q 

-.._ “--...“. ... . ..___ 0.0. 0 -... 
. .._ ..__ oo* . . . . 0.001 - *.., . . . .._ o. 

.\ ‘??? 0 Q .\ . . ~. @ o.ooo5 - -\ : :, Q - 

~---_s :.-. ~_.~~~~..6..9..o..?..o...~.P-3 
j 

O- 
_- .___ _ __ ~_+__~_94__+__6_~ .- 

-0.ooo5 
-0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 

Heat flnxes 
Fig. 12. Influence of heat flux models on turbulent heat flux profiles (Ma = 3 boundary layer, adiabatic 

wall). 

coefficient on the Mach number, boundary layers with 
different Mach numbers (ranging from 1 to 8) are 
computed. The re,sults are compared with the skin 
friction values obtained from the Van Driest cor- 
relation [ 181. Studies have proved that this formula is 
in good agreement with experimental results in the 
case of compressib’le boundary layers [ 191. The evol- 
ution of the skin friction coefficient with the Mach 
number is plotted in Fig. 14 for the two turbulence 
models and the Va.n Driest correlation. Table 1 con- 
tains the corresponding values of the skin friction. 
The results are close to Van Driest’s values, except for 
Mach 8. At this Mach number, however, the limits of 
the efficiency of the solver are reached. 

6.2. Computation of boundary layers on a cooled wall 
Boundary layer computations for a cooled wall, at 

a Mach number of five are now presented. The ratio 
between the wall temperature imposed and the adia- 
batic temperature varies from 1.0 to 0.2. 

The balance between the different terms in the tur- 
bulent heat flux equations is first presented in Figs. 15 
and 16. Indeed, the cooling produces a sharp decrease 
in temperature near the wall and the temperature 
gradient changes its sign. This leads to a change of 
sign in the production and dissipation terms near the 
wall (2’ z 10). As a further effect the maximum 
amplitudes of production, dissipation and pressure- 
scrambling terms are reduced compared to the adia- 
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Fig. 14. Variation of skin friction coefficient with Mach number for the two turbulence models (boundary 
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Table 1. Effect of turbulence model on skin friction for flat plate boundary layer along adiabatic wall 

Skin friction (adiabatic wall) 

Mach number 0.3 2 3 5 8 

Reynolds stress model & alg. model for heat fluxes 0.00268 0.00195 0.00149 0.000929 0.000418 

Reynolds stress model & transport equation for heat 0.00277 0.00197 0.00155 0.000954 0.000436 
fluxes 

Van Driest correlation 0.00267 0.00198 0.00153 0.000938 0.000518 
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Fig. 16. Balance of wall-normal turbulent heat flux for a Ma = 5 boundary layer along a cooled wall 
(TWIT, = 0.2). 

batic wall case at d4u = 3. An explanation for all these 
effects must be searched for in the modified behaviour 
of the turbulent heat fluxes. The fact that these fluxes 
enter the models for the pressure-scrambling and dis- 
sipation terms underlines the importance of modeling 
in the near-wall region. 

In order to compare the effects of wall cooling and 
thermal isolation on the turbulent heat fluxes at 

Mn = 5, Fig. 17 contains profiles of u%’ and 3’ for 
an adiabatic wall and for a ratio of TJT,, = 0.2. The 
profiles show a reduction in the peak heat fluxes by 
factors of 2-3 in the case of wall cooling. Close to the 
wail the direction of both fluxes is reversed, which is a 

consequence of the change in the temperature gradient 
there, as to be seen in Fig. 18. 

Comparisons are now made between the computed 
skin friction coefficients and the theoretical values of 
the Van Driest formula. The skin friction coefficient 
is non-dimensionalised by its incompressible value. 
The comparisons are presented in the Table 2 and 
in Fig. 19. The present computations are in good 
agreement with the Van Driest predictions. 

6.3. Computation of shock/boundary layer interactions 
To test the model in more complex cases, two inter- 

actions of boundary layers with shocks are computed. 
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Table 2. Effect of turbulence model on skin friction for flat plate boundary layer along cooled wall 

Skin friction (cooled wall) 

Temperature ratio T,,,/T,, 0.2 0.4 0.6 0.8 

Reynolds stress model & alg. model for heat fluxes 0.001524 0.001297 0.001130 0.001030 

Reynolds stress model & transport equation for heat 0.001507 0.001300 0.001154 0.001055 
fluxes 

Van Driest correlation 0.001556 0.001321 0.001156 0.001038 
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Fig. 20. Wall pressure distribution for oblique shock/boundary layer interaction. Comparison of three 
turbulence models (Ma = 2.9, Re, = 9.7 x 105, adiabatic wall). 

The reflexion of an oblique shock on a boundary layer 
at Mu = 2.9 (the case of Reda and Murphy [20]) is 
first considered, then the interaction between a bound- 
ary layer and a shock caused by a 24” ramp at 
Ma = 2.84 (experiment of Settles et al. [21]). In the 
two cases, the strength of the shock is sufficient to 
produce a recircul.ation bubble. The computations are 
initialised with thg: results for the same flows obtained 
with the Reynolds stress model and the algebraic 
model for the hefat fluxes. In the two cases, grids of 
100 x 60 nodes refined near the wall are used. The 
protiles for wall pressure (Figs. 20 and 22) and skin 
friction (Figs. 21 and 23) are plotted. The results pro- 

duced by the k-w model, the Reynolds stress model 
with the algebraic heat fluxes and the Reynolds stress 
model with the transport equations for the heat fluxes 
are compared. The change from the k-w model to the 
Reynolds stress model improves the results a lot in 
the case of the ramp flow (Figs. 22 and 23). However, 
the use of transport equations for the heat fluxes does 
not modify the results much compared to the algebraic 
model. We only notice a slight increase in the size of 
the recirculation bubble for the ramp flow. The reason 
is that the turbulent heat fluxes do not directly influ- 
ence quantities like the wall pressure and the skin 
friction. A comparison of Stanton numbers would 
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Fig. 22. Wall pressure distribution for 24” compression corner flow. Comparison of three turbulence models 
(Ma = 2.84, Re, = 1.69 x 106, adiabatic wall). 
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have been more interesting. Unfortunately exper- 
imental data were not reported by the authors [20, 
211. 

7. CONCLUSIONS 

Modelled transport equations for the turbulent heat 
fluxes have been used to compute supersonic flows. 
The model assumptions are very close to those of Lai 
and So [l] developed for incompressible flows. They 
should lead to reliable results as long as intrinsic 
effects of compressibility do not appear, i.e. for wall 
boundary layers up to Ma = 5 where compressibility 
effects can be interpreted in terms of mean density 

variations. The model must fail when remarkable den- 
sity fluctuations appear in the flow as a consequence 
of high levels of the turbulent Mach number or more 
precisely of the gradient Mach number (see Sarkar 

PW 
Several computations of simple boundary layers 

along isothermal and cooled walls at different Mach 
numbers have been performed. Such flow cases have 
also been used to test different inflow boundary con- 
ditions and model assumptions. It turns out that the 
use of heat flux equations does not modify much the 
aerodynamic field data as compared to algebraic heat 
flux models. The profiles of the turbulent heat fluxes, 
however, clearly differ from algebraic predictions. In 



Turbulent heat fluxes in compressible flows 2737 

0.003 

0.0025 - 

0.002 - 

, 0 I I 
Reynolds stress + eq. for heat fluxes - 

Reynolds stress + alg. for the heat fluxes ------ 
basic k-w model -....-. 

Exp. Settles et al. (1979) 
8 

e Q 

-0.001 
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 

XM 
Fig. 23. Skin friction distribution of 24” compression comer flow. Comparison of three turbulence models 

(Ma = 2.84, Re, = 1.69 x 106, adiabatic wall). 

particular, the longitudinal heat flux is wrongly pre- 
dicted by the gradient transport hypothesis. Further 
evidence of the advantage of transport equations over 
algebraic models might be gained by comparing Stan- 
ton numbers. Unfortunately, they were not reported 
in the experiments used for reference. The skin friction 
and wall pressure distributions of shock turbulence 
interactions again do not show dramatic modi- 
fications due to the use of heat flux equations. This 
shows that new and careful experiments have to be 
carried out, in which, besides complete data of the 
turbulent momentum transport, detailed heat flux 
data are obtained. Only then, a conclusive evaluation 
of the present turbulence model is possible. 
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